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Bähar Jelovica a,*, Jaakko Erkinaro b, Panu Orell b, Bjørn Kløve a, Ali Torabi Haghighi a, 
Hannu Marttila a 

a Water, Energy and Environmental Engineering Research Unit, University of Oulu, Finland 
b Natural Resource Institute Finland (LUKE), Finland   

A R T I C L E  I N F O   

Keywords: 
Atlantic salmon Abundance 
Machine Learning Modelling 
Habitat-Abundance Relationship 
Arctic 

A B S T R A C T   

Climate change and anthropogenic activities have impacts on fish habitat suitability, demanding more accurate 
modeling of species abundance for effective conservation and management. In this study, we applied Machine 
Learning techniques to model the habitat-abundance relationship of juvenile Atlantic salmon (Salmo salar) in the 
Teno catchment in Finland and Norway. To capture the complexity and nonlinearity of the habitat-abundance 
relationship, we employed Support Vector Regression (SVR), Random Forest (RF), Gradient Boosting (GB), 
and Support Vector Classification (SVC) and compared their performances. Among the regression models 
considered, those incorporating input variables such as substrate, shade, and vegetation demonstrate higher 
performance. Support Vector Regression yields the highest mean cross-validation score (R2 = 0.58), and Gradient 
Boosting produces the highest test score (R2 = 0.6) among the regression techniques. The mean cross-validation 
and test scores obtained for the classification models are notably higher compared to the regression models 
across all scenarios. A comparison between regression and classification results highlights the challenges of 
accurately modeling the habitat-abundance relationship. This study provides insights into the challenges and 
potential of machine learning techniques for juvenile Atlantic salmon habitat-abundance modeling in complex 
riverine habitat environments. The findings emphasize the importance of considering the limitations of machine 
learning models, particularly in ecological contexts, and the need for further research to address temporal 
variations and improve the precision of habitat-abundance modeling.   

1. Introduction 

Climate change and anthropogenic activities influence fish habitat 
suitability by changing the river temperature (Isaak et al., 2012), 
vegetation distribution (Ackerly et al., 2015), food availability 
(Cameron et al., 2019), water quality (Ritson et al., 2014), and hydro
logical regimes (Jelovica et al., 2022). Since distribution and abundance 
of fluvial fish are strongly impacted by the habitat (Armstrong et al., 
2003), it is essential to measure the indicators which are reflecting the 
habitat quality and could support river conservation and improvements 
(Giorgio et al., 2016). For example, stream depth, substrate, flow, 
shelter, temperature, and oxygen availability are some of the essential 
factors that influence the salmon abundance in their various life cycles. 
Abiotic factors such as riverbed geomorphology, hydrology, water 
quality, and aquatic environment are complex and have intricate inde
pendence. The habitat dataset is complex and the relationships among 

variables are not necessarily linear, making the modeling of the fresh
water communities challenging (Armstrong et al., 2003, Mondal and 
Bhat, 2021). These challenges promote application of data-driven tools 
such as Machine Learning (ML) techniques (Lee et al., 2003, De’ath 
et al., 2000), which support nonlinear relations. 

Machine learning (ML) is a strong statistical tool to identify 
nonlinear relationships in natural phenomena (Naghibi et al., 2016). In 
ecological studies, ML has been applied to model complex species 
community composition and abundance (Matsuzawa et al., 2023). For 
example, Mondal and Bhat (2021) modeled the species richness and 
diversity in eastern and central India using various ML approaches, 
leveraging abundance and ecological data. Wellman et al. (2020) used 
machine learning for modeling the ecology of urban birds and their 
habitats, whereas Xu et al., (2024) used support vector regression, RF, 
and extreme gradient boosting to predict the phytoplankton biomass 
using environment variables. In general, Support Vector Machine (SVM) 
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(Kang et al., 2022, Ahmadi et al., 2021, Fan et al., 2017, Park et al., 
2015), Random Forest (RF) (Yang et al., 2020, Guo et al., 2019, Woo 
et al., 2019), and Gradient Boosting Regression (GBR) (Ficsór and Csa
bai, 2023, Garcia et al., 2018, Welchowski et al., 2022) have been widely 
used to solve ecohydrological and environmental problems. SVM pro
posed by Vapnik (1998) is one of the most popular ML techniques to 
describe nonlinear and complex data and has been used for uncertainty 
analysis (Liu et al., 2013, Singh et al., 2011). SVM has an excellent 
generalization performance and produces competitive results with the 
smallest amount of model tuning (Granata et al., 2017, Hoang et al., 
2010). Fan et al. (2017) used SVM to predict the bio-indicators of an 
aquatic ecosystem in the Taizi River in China, and Kang et al. (2022) 
applied SVM to estimate the fish assessment index in South Korean 
rivers. On the other hand, RF method has been used in many research 
and studies due to its high accuracy and superiority (Ho, 1995, Amit and 
Geman, 1997, Breiman, 1996). Martínez-Santos et al. (2021) used SVM 
and RF to predict aquatic ecosystem mapping. Olaya-Marín et al. (2013) 
applied RF for fish richness in Mediterranean region. RF was an effective 
approach to assess the stream habitat conditions and demonstrate the 
seasonal, longitudinal, and local co-occurrence pattern of fish species in 
Yagawa River (Matsuzawa et al., 2023). Yang et al. (2020) developed a 
RF model to show the composition of fish species between two reservoirs 
in Yangtze River China. GBR model has successfully modelled problems 
with many variables and nonlinear relationships and shown high pre
diction accuracy (De’ath and Fabricius, 2000). As an example, Leath
wick et al. (2006) analyzed the relationships between demersal fish 
species richness, environment, and trawl characteristics using GBR. 
Ficsór and Csabai (2023) applied various machine learning models such 
as RF and GB to predict the distribution of Hydropsyche and explained 
the impact of environmental factors on the dominant presence of the 
species. 

Although, ML models exhibit significant capabilities in addressing 
challenges such as small dataset sizes, high dimensionality, and non- 
linear problem domains (Ding et al., 2011), their performance and ac
curacy significantly depend on the size and quality of the training 
dataset. The habitat datasets are often small, scarce, and imbalanced due 
to costly and labor measurements. Therefore, it is challenging to pre
cisely solve the problems related to these datasets (Danandeh Mehr 
et al., 2022, Crisci et al., 2012). To address this issue, we applied ML 
techniques that are less sensitive to the sample size. Since each model 
has advantages, we used multiple models and compared their perfor
mance to estimate habitat-abundance relationships in juvenile Atlantic 
salmon (Salmo salar). To enhance the performance of models, we applied 
a grid search algorithm to select the hyperparameters which control the 
learning process and model results. The grid search algorithm coupled 
with K-fold cross-validation (Fayed and Atiya, 2019) is employed to 
optimize the hyperparameters in the models. This utilization of cross- 
validation not only enhances the model’s reliability and mitigates 
overfitting, but also provides a more accurate estimation of the model’s 
generalization performance on the test set (Abobakr Yahya et al., 2019, 
Danandeh Mehr et al., 2022). 

This study aims to model the relationships between abundance of 
juvenile Atlantic salmon and their fluvial habitat using datasets from the 
subarctic Teno catchment in the northernmost Scandinavia. Abundance 
refers to the density of juvenile Atlantic salmon per 100 m2 in the 
studied area. Given the relatively small size of the habitat data and the 
intricate relationship between habitat characteristics and juvenile 
salmon abundance, we employed a range of ML techniques to model the 
habitat-abundance relationship of juvenile Atlantic salmon in two 
distinct age categories: fry (age- 0 + ) and parr (age- 1 + and older). 

2. Methods 

2.1. Study area and data 

The subarctic Teno River (Tana in Norwegian, Deatnu in Sami) forms 

the border between northernmost Finland and Norway at 70◦N. With a 
catchment area of 16,386 km2, it is one of the largest Atlantic salmon 
rivers running to the North-East Atlantic Ocean. The mean annual 
discharge of the river is 177 m3s− 1, with spring flood peaking up to 
2000–3000 m3s− 1. The mean annual temperature is between ca. 0 to − 3 
◦C and annual precipitation ranges from ca. 300–500 mm (Koster et al., 
2005). Atlantic salmon in the Teno River are distributed over more than 
1100 km of the main branch and tributaries. The population complex 
shows extraordinary diversity by numerous genetically distinct sub- 
populations (Vähä et al., 2017) and by vast variation in life-history 
strategies (Erkinaro et al., 2019). 

Estimating juvenile Atlantic salmon abundance has been part of the 
long-term monitoring program in the Teno (Niemelä et al., 2005). Per
manent monitoring sites (Fig. 1), have been distributed along three main 
branches of the Teno system including the Teno main stem and two of its 
large tributaries: Inarijoki and Utsjoki. Most of the Inarijoki follows the 
Finnish-Norwegian border. The Teno mainstream starts from the 
confluence of Inarijoki and another large headwater tributary, Kar
asjohka. Inarijoki has a length of 153 km with a drainage area of 3,152 
km2 and average monthly discharge of 36.4 m3s− 1. Utsjoki is the largest 
tributary on the Finnish side of Teno catchment with a drainage area of 
1,652 km2 and mean discharge of 18 m3s− 1. 

Habitat data was collected from permanent electrofishing sites, 
(Fig. 1), in Teno, Inarijoki, and Utsjoki Rivers in two consecutive years 
from July to October. At each electrofishing site, three points on three 
transects, two points close to the edges and one in the middle of the site, 
were selected. Each point measured 0.25 m2 (0.5 x 0.5 m). The habitat 
variables i.e., habitat characteristics of the electrofishing sites, include 
water temperature, average depth (cm), average velocity (cms− 1), sub
strate types, shade types, vegetation, and shelter index. The substrate 
was categorized into four groups including organic-silt-sand, gravel 
(2–16 mm), cobble (17–130 mm), stone (131–500 mm), and boulder 
(greater than 500 mm). The observed shades were mainly boulders and 
sometimes other structures such as large wooden debris. Vegetation 
includes moss, algae, and other plants. Shelter was estimated by visually 
identifying all potential interstitial spaces in the substratum. The depth 
was measured with a flexible PVC tube (13 mm diameter) where dis
tances of 3, 5 and 10 cm were marked off (cf. Finstad et al., 2007). 
Spaces deeper than 3 cm (25–100 % of body length of the fish) were 
counted as a shelter, and three shelter size (depth) groups were identi
fied: 3–5 cm; 5–10 cm; > 10 cm. Juvenile salmon abundance was 
defined as the number of fish per 100 m2 (single-pass electrofishing, no 
removal estimates used) in two age groups: fry (age- 0 + ) and parr (age- 
1 + and older). 

2.2. Regression and classification models 

We employed SVR, RF, and GB as a set of regression techniques along 
with SVC as a classification tool to model the habitat-abundance rela
tionship of juvenile Atlantic salmon. For the SVC model, fry and parr 
abundance are classified into distinct classes using their abundance 
histograms (Fig. 2). The classification of abundance offers a reduction in 
the complexity of the model’s results as opposed to using regression 
models. We identified two and four distinctive classes for fry and parr 
abundance, respectively. Given the limited size of the habitat dataset, 
which comprises 14 habitat variables and only 114 records of data, we 
developed multiple models to assess and compare their performance. 

2.2.1. Support vector Machine (SVM) 
The Support Vector Machine technique is based on the dimension 

theory by Vapnik-Chervonenkis (1971) and provides a robust solution 
for both regression and classification problems based on a maximal 
margin hyperplane. SVM finds a dividing hyperplane with maximum 
margin. For a simple two-dimensional plane, the hyperplane is defined 
as f(x) = ωTxi +b where ω is the support vector and b/‖ω‖ determines 
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the offset of the hyperplane from the origin. In the case of non-linear 
relationships, SVM uses a technique called kernel trick which can 
project the data into high dimensional space. A detailed explanation of 
SVM technique can be found in the works of Abobakr Yahya et al. 
(2019), Rahimian Boogar et al. (2019), and Auerbach and Fremie, 
(2022). 

The performance of SVM relies on the selection of kernel functions 
and hyperparameters such as gamma and Capacity (C). The common 
kernel functions are radial basis function (RBF), sigmoid, and poly
nomial. Notably, RBF exhibits higher efficiency compared to other 
kernel functions, as highlighted by Yang et al. (2021), making it the 

preferred choice in this study for constructing the SVR and SVC models. 
The hyperparameters Gamma and C play essential roles in the per

formance of SVM. The accuracy of prediction is influenced by the 
appropriate selection of these hyperparameters. The Gamma parameter 
describes the width or slope of the kernel function which controls the 
complexity of the model whereas C affects the fundamental tradeoff. It is 
crucial to note that choosing a smaller value of C may result in under
fitting (Abobakr Yahya et al., 2019). 

2.2.2. Random forest (RF) 
The Random Forest algorithm, introduced by Breiman (2001), is 

Fig. 1. Teno catchment and sampling sites in the Teno River located on the border between Finland and Norway.  

Fig. 2. The classification of fry and parr abundance based on their abundance histogram per 100 m2 for the SVC model. This approach discerns two distinct classes 
for fry abundance and four distinct classes for parr abundance. 
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based on the concept of model aggregation to produce accurate pre
dictions for both regression and classification problems. It is one of the 
most popular machine learning techniques widely employed in envi
ronmental studies (Vorpahl et al., 2012, Prasad et al., 2006). The tech
nique has a fast-learning rate and can handle multidimensional datasets 
(Li et al., 2021). 

Random forest is composed of numerous binary decision trees that 
use bootstrapping samples from the training dataset and a random se
lection of explanatory features at each node (Amit and Geman, 1997, 
Ho, 1998, Breiman, 2001). RF uses the bootstrap method to divide the 
original dataset into random subsets. A decision tree is trained inde
pendently for each subset. The result is obtained by averaging the pre
dictions of all decision trees (Li et al., 2021). The randomness enforces 
the model’s robustness and improves the learning process by changing 
from one random partitioned inventory subset to another to obtain the 
patterns of interest (Prasad et al., 2006). The Random Forest algorithm’s 
performance is influenced by several hyperparameters, including the 
number of trees employed in the ensemble (Vorpahl et al., 2012). 

2.2.3. Gradient boosting regression (GBR) 
Gradient Boosting is a versatile technique applicable to both 

regression and classification problems. The technique relies on a set of 
weak learners or models such as decision trees. Since it is a boosting 
method, it builds the model by stages and achieves a single strong 
ensemble model optimizing a loss function. Friedman suggested the 
negative gradient of loss function L(y, F(x)) to approximate the loss in a 
Classification and Regression Tree (CART) F̂ = argminEx,y[L(y, F(x) ) ]
where F̂ is an estimate of the function F(x) and {(x1, y1), (x2, y2),⋯,

(
xn,

yn
)
} is the training dataset (Friedman, 2002, Bühlmann and Hothorn, 

2007). 
The GBR method encompasses several hyperparameters that impact 

its performance such as number of estimators, learning rate, maximum 
depth, and minimum of sample leaf. A comprehensive description of 
GBR and its associated hyperparameters can be found in García Nieto 
et al., 2021. 

2.2.4. Hyperparameter optimization 
Although machine learning models are powerful in solving small 

dataset, high dimensional, and non-linear problems (Ding et al., 2011), 
the selection of hyperparameters affect their performance. Therefore, 
hyperparameter tuning is crucial for finding the optimal combination of 
hyperparameters that maximize the model’s performance (Fayed and 
Atiya, 2019). 

There are various approaches to tune the hyperparameters including 
the grid search algorithm (Fayed and Atiya, 2019), genetic algorithm 
(Sanz-Garcia et al., 2015), and swarm intelligence optimization algo
rithm (Adachi and Yoshida, 1995). The grid search involves a K-fold 
cross-validation widely used to assess the model’s parameters. 

During the K-fold cross-validation, the training dataset is partitioned 
into K-folds. A model is trained in sequence on K-1 folds and tested on 
the fold that is not used during training. This process is repeated for each 
fold, and the model’s score is averaged over the folds. Cross-validation 
improves the model’s reliability, mitigates overfitting, and provides a 
better estimate of generalization performance on the test set (Abobakr 
Yahya et al., 2019, Danandeh Mehr et al., 2022). 

Table 1 presents the models and the values considered for the 
hyperparameter optimization. The values and interval boundaries are 
determined through trial and error, aiming to explore a comprehensive 
range of possibilities. 

2.3. Selection of habitat variables and data preprocessing 

We defined various scenarios for the selection of habitat variables 

incorporated in the models. These scenarios play a pivotal role in 
determining the importance of habitat variables when examined 
collectively (Scenario 1), individually (Scenario 2), or in various groups 
(Scenarios 3, 4, and 5) with regards to the models’ results. One can 
choose alternative scenarios based on their specific modeling objectives 
to assess their impact on the results. Scenarios 3, 4 and 5 were specif
ically chosen following the model’s results obtained for Scenarios 1 and 
2. This selection enables a deeper exploration of the significance of the 
habitat variables on the juvenile salmon abundance. A conceptual map 
of the study is shown in Fig. 3.  

- Scenario 1 includes all habitat variables in the models i.e., water 
temperature, mean depth, mean velocity, substrate types (organic- 
silt-sand, gravel, cobble, stone, boulder), shade types (boulder shade, 
other shade), and vegetation (algae, moss, plants), and shelter index.  

- Scenario 2 considers each habitat variable individually. This scenario 
particularly investigates if a certain variable has a higher impact on 
the juvenile salmon abundance.  

- Scenario 3 considers only substrate variables.  
- Scenario 4 considers only shade and plants.  
- Scenario 5 explores a combination of various substrates, shades, and 

vegetation (a combination of scenario 3 and 4). 

Prior to model training, the dataset is divided into the training and 
test sets, with a split ratio of 20 %. The quality of the dataset would 
impact the model’s output. Hence it is important to remove the outliers 
and missing values (Ro et al., 2015). Since the number of records is small 
in the dataset, we only excluded the outliers in the water temperature of 
less than 10◦ C. 

A conventional strategy to deal with missing data is to remove the 
entire rows or columns containing missing values. However, this comes 
at the price of potentially losing valuable data. A more effective strategy 
is to infer the missing values from the known part of the data using the 
most suitable imputation technique. In this study, we deployed the mean 
strategy to impute the missing numeric values. 

Since the dataset values exhibit different ranges, normalization is 
necessary to ensure optimal training speed and accurate results. We 
employ Min-max normalization method, which maps all the data to the 
range between 0 and 1 using equation (1) (Yang et al., 2021). 

Xnor = (x − xmin)/(xmax − xmin) (1)  

Where x is the original data, xnor is the normalized data, xmax and xmin are 
the maximum and minimum values of the data, respectively. 

Table 1 
Hyperparameter values employed in the grid search algorithm during cross- 
validation.  

Model Hyperparameter Value  

SVM C A set of evenly spaced numbers generated in the 
range of [0.01, 285] 

Gamma A set of evenly spaced numbers generated in the 
range of [0.01, 380] 

Kernel RBF  

RF Maximum depth A set of evenly spaced numbers generated in the 
range of [1, 50]  

GBR Number of 
estimators 

A set of evenly spaced numbers generated in the 
range of [100, 1000] 

Learning rate {0.1, 0.05, 0.02} 
Maximum depth {2, 4, 6} 
Minimum sample 
leaf 

{3, 5, 9}  
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3. Results 

3.1. Habitat data 

The linear relationships among habitat variables and juvenile salmon 
abundance are evaluated using Pearson Correlation Coefficient (PCC) 
(Fig. 4) which ranges from 0 to 1 with one indicates a strong positive 
correlation. The PCC revealed no significant correlations between fry 
abundance and the habitat variables. The highest PCC value of 0.44 is 
observed between fry and parr abundance. 

Among the habitat variables, the shelter index, algae, boulder shade, 
stone and organic substrate exhibit higher PCC values with parr abun
dance. Notably, the shelter index demonstrates the highest PCC value of 
0.48 with parr abundance. However, the correlations between the 

habitat variables and parr abundance are not found to be statistically 
significant overall. 

Among habitat variables, a notable high correlation of 0.9 is 
observed between stone and cobble. Boulder shade exhibits a relatively 
stronger correlation of 0.6 with stone, and both other shade and algae 
demonstrate a comparatively higher PCC of 0.6 when compared to the 
remaining habitat variables. 

3.2. Juvenile salmon abundance with respect to the depth and water 
velocity 

The distribution of mean water velocity and mean depth with respect 
to the juvenile salmon abundance graphs are shown in Fig. 5a and b 
respectively. The fry and parr abundance graphs present the total 

Fig. 3. Conceptual map of this study including statistical analysis of the habitat variables, various scenarios to select habitat variables for modeling, data pre
processing, hyperparameter optimization and cross validation imbedded in the regression and classification modeling, and model evaluation. 

Fig. 4. Pearson Correlation Coefficients among habitat data and juvenile salmon abundance, ranges from 0 to 1 with one indicates a strong positive correlation.  
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abundance estimated across all electrofishing sites for two years. Fry and 
parr have significantly higher abundance at the velocity ranges between 
13 and 56 cms− 1 in comparison to the other velocity ranges. Conversely, 
their abundance is the lowest at velocities below 13 and above 56 cms− 1. 
Fry abundance increases significantly at velocities above 13 cms− 1, 
reaches its peak within 24 and 34 cms− 1 and drops at velocities 
exceeding 35 cms− 1. On the other hand, the parr abundance reaches its 
highest at velocities between 13 and 23 cms− 1 and declines at velocities 
beyond 24 cms− 1. The mean velocity ranges between 2 and 78 cms− 1, 
and 96 % of the studied area has a mean velocity below 56 cms− 1. 

From the mean depth distribution and abundance graphs (Fig. 5b), 
we observed that the fry abundance peaks at the mean depths below 29 
cm which constitute about 40 % of the studied area and it decreases at 
the depth beyond 29 cm. Parr abundance gradually increases within 
various depth ranges below 37 cm and reaches its highest at depths 
between 29 and 37 cm, but significantly declines at depths exceeding 37 
cm. Approximately 70 % of the studied area exhibits mean depth ranges 
between 12 and 37 cm. Both fry and parr have the lowest abundance at 
depths above 45 cm. 

3.3. Regression modeling 

The SVR, RF, and GB regression techniques are evaluated using the 
coefficient of determination (R2). The optimized parameter values and 
corresponding R2 scores for the validation and test sets are presented in 

Table 2 for fry and Table 3 for parr. It is important to note that all in
dividual habitat variables (scenario 2), except the shelter index, resulted 
in negative R2 values for both the validation and test sets and, thus, are 
not reported. 

For fry abundance, the SVR achieves the highest mean cross- 
validation score of 0.58 in scenario 5 which involves substrates, 
shades, and vegetation. Regarding the test score, SVR performs best in 
scenario 3 (R2 = 0.28), which includes solely the substrates. On the other 
hand, both RF and GB attained the highest mean cross-validation scores 
(R2 = 0.33 and = 0.44, respectively) when considering the shelter index 
(scenario 2), while achieving the highest test scores (R2 = 0.46 and R2 =

0.49, respectively) for substrates (scenario 3). Comparing all models and 
scenarios, SVR demonstrates the highest mean cross-validation score 
(R2 = 0.58), indicating a better fit to the validation data. However, GBR 
demonstrates the highest test score (R2 = 0.49), suggesting superior 
generalization performance on unseen data. 

The grid search heatmaps for Fry habitat-abundance modeling, 
(Fig. 6), illustrate the influence of various combinations of hyper
parameters on mean cross-validation scores (R2). Darker colors show 
higher scores. These heatmaps focus exclusively on the models that 
attained the highest mean cross-validation scores across all scenarios, 
shown in bold font in Table 2. A subset of hyperparameter values is 
selected for each heatmap to optimize the clarity and interpretability in 
presenting the impact of hyperparameter tuning on model performance. 

The SVR models exhibit varying performance with different values of 

Fig. 5. A) mean velocity distribution, b) mean depth distribution with respect to fry and parr abundance which are estimated across all electrofishing site in 
two years. 
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C and gamma hyperparameters in scenario 1 and 5 (Fig. 6a and b). In 
scenario 1, specifically for C and gamma values of 60 and 4, respectively, 
the model demonstrates optimal performance. Notably, lower values of 
C (1 and 10) across the suggested range of gamma values result in 
suboptimal performance. The model performance enhances gradually 
with larger values of C, particularly when gamma is set to 4 and 10. 

In scenario 5 (Fig. 6b), the optimal C and gamma values are 95 and 
250, respectively. The model performance is notably low for smaller 
values of C (1 and 10). It gradually increases with larger values of C until 
it reaches the optimum at 95, after which it begins to decline. Interest
ingly, the model’s performance remains relatively consistent at higher C 
values. On the other hand, a smaller gamma value of 1 across the sug
gested range of C values results in poor model performance, while larger 
gamma values, especially in conjunction with larger C values (greater 
than 10), gradually enhance the model’s performance. 

The heatmaps for random forest and gradient boosting (Fig. 6c and d, 
respectively) are presented for shelter index in scenario 2, where the 
models illustrate the highest mean cross-validation scores (Table 2). The 
random forest performance is optimal at maximum depth hyper
parameter of 2, with consistent performance for larger maximum depth 
values. 

In the case of gradient boosting, performance gradually improves 

with an increase in the number of estimators, reaching optimal perfor
mance at 90 estimators and a maximum depth of 2. The model perfor
mance is relatively stable when number of estimators ranges between 50 
and 90 and the maximum depth is greater than 2. The performance is 
notably low when the number of estimators is set to 1 across various 
suggested maximum depths. 

In parr habitat-abundance modeling, SVR achieves the highest mean 
cross-validation scores for scenarios 3 (substrates, R2 = 0.55), 4 (shade 
and vegetation, R2 = 0.53) and 5 (substrates, shade, and vegetation, R2 

= 0.53). RF obtains the highest mean cross-validation score for scenario 
4 (shades and vegetation, R2 = 0.4). GBR exhibits the highest mean 
cross-validation scores when considering all variables (scenario 1, R2 =

0.44) and the highest test score for scenario 4 (shade and vegetation, R2 

= 0.6). 
The grid search heatmaps (Fig. 7) illustrate the influence of varying 

combinations of hyperparameters on mean cross-validation scores (R2) 
in Parr habitat-abundance modeling. These heatmaps focus exclusively 
on the models that attained the highest mean cross-validation scores 
across all scenarios, shown in bold font in Table 3. A subset of hyper
parameter values is selected for each heatmap to optimize the clarity 
and interpretability in presenting the impact of hyperparameter tuning 
on model performance. 

Fig. 6. Grid-Search heatmaps of hyperparameters and mean cross-validation scores (R2) in Fry habitat-abundance models: a) SVR - Scenario 1, b) SVR - Scenario 5, c) 
RF - Scenario 2 (Shelter Index), d) GBR - Scenario 2 (Shelter Index). Darker colors show higher scores. 
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The SVR model performance in scenario 3 and 4 (Fig. 7a and b) are 
notably low for small C values (e.g., 1) across the suggested gamma 
values. In scenario 3 (Fig. 7a), the model performance improves as both 
C and gamma values increase, reaching optimum performance at C = 36 
and gamma = 225. The model performance is significantly poor with 
smaller values of gamma (e.g., 1). In scenario 4 (Fig. 7b), smaller values 
of C and gamma (e.g., 1) result in low model performance. The model 
performance improves with values of C and gamma increasing and 
reaches the best performance at 257 and 226 respectively and stays 
consistent afterwards. 

The random forest model performance in scenario 4, (Fig. 7c), is poor 
for smaller value of maximum depth (e.g., 1) and improves as maximum 
depth increase, reaching the optimum at 13. The model performance is 
not sensitive to larger values of maximum depth (e.g., greater than 13). 
In the case of gradient boosting in scenario 1, (Fig. 7d), performance is 
suboptimal when number of estimators set to 1, but it gradually im
proves with an increase in the number of estimators, reaching optimal 

performance at 900 estimators and a maximum depth of 2. 

3.4. Classification modeling 

The SVC models is applied to predict the fry and parr abundance 
based on the classes defined using their abundance histogram (Fig. 2). 
The mean cross-validation and test scores present the accuracy of the 
model. As explained in section 2.2, two and four classes are considered 
in the SVC modeling respectively. The mean cross-validation and test 
scores obtained for the classification models (Table 4 and Table 5) are 
notably higher compared to the regression models across all scenarios. 
Among the scenarios for fry (Table 4), the model achieves the highest 
accuracy when considering the shelter index, with mean cross- 
validation and test scores of 91 % and 96 %, respectively. Notably, the 
test scores remain consistent across all scenarios, except for the substrate 
types organic, silt, and sand, which exhibit slight variations in 
performance. 

In the parr habitat-abundance modeling, scenario 5 yields the 
highest cross-validation accuracy which involves substrate, shade, and 
vegetation variables. Conversely, scenario 2 exhibits lower mean cross- 
validation scores compared to the other scenarios. Within scenario 2, 
most individual habitat variables display similar mean cross-validation 
accuracies, except for mean depth, stone, and shelter index, which 
demonstrate higher mean cross-validation scores. Across all scenarios, 
the test scores remain consistent, except for the algae and moss, which 
show lower accuracies. 

4. Discussion 

In our study at the subarctic Teno catchment, we employed several 
machine learning (ML) techniques to model the habitat-abundance re
lationships of juvenile Atlantic salmon. The performance and accuracy 
of ML techniques can be greatly influenced by the size of dataset. Since 
collection of long-term habitat data is often costly and laborious, these 
datasets tend to be scarce and imbalanced in nature (Niemelä et al., 
2005, Danandeh Mehr et al., 2022, Matsuzawa et al., 2023). To address 
these issues, we used ML models which are less sensitive to the sample 
size and have been proven to overcome the complexity and uncertainties 
in the data (Davoudi Moghaddam et al., 2020, Liu et al., 2013, Singh 
et al., 2011, Guisan and Thuiller, 2005). Furthermore, we performed 
feature scaling (normalization), K-fold cross-validation, and hyper
parameter optimization to improve the performance of the models. 
Despite our efforts, the R2 scores obtained from the regression models 
are not notably high which could be due to the small sample size, un
certainties in habitat data and complex nature of species (Matsuzawa 
et al., 2023). The ML techniques rely on the data and would perform 
better with large datasets (Chapelle et al., 2002). However, most 
ecological datasets are small unless they are part of large-scale projects 
(Mondal and Bhat, 2021). Since data from long-term monitoring may 
help to improve the performance of the models, therefore, we suggest 
collecting more local habitat data or combining international datasets 
from similar river systems to ensure more data records in the modeling. 

Grid-Search heatmaps visually depict how different combinations of 
hyperparameters affect the performance of regression models in our 
results (see Fig. 7). In SVR model, small C values indicate a wider range 
for decision boundary which may result in suboptimal performance. 
Increasing C typically leads to a narrower margin for the decision 
boundary, which can result in better performance. Gamma controls the 
curvature of the Gaussian Kernel function. Small values of gamma 
correspond to smoother decision boundary, leading to a broader 
acceptance of data points in the calculations. Larger values of gamma 
can lead to a more complex decision boundary, which might improve 
performance in cases where the relationship between input and output 
variables is highly non-linear. Very large gamma values lead to 

Table 2 
SVM, RF, GBR modeling results for fry with R2 as a performance metric. (LR: 
Learning-Rate, MD: Max-Depth, MSL: Min-Samples-Leaf, NE: n-estimators). 
Bolded numbers indicate the highest mean cross-validation/test scores per 
model and scenario.  

Model Habitat variable Optimized 
hyperparameter 
value 

Mean Cross- 
Validation 
Score (R2) 

Test 
Score 
(R2)  

SVR All variables 
(Scenario 1) 

C: 60, gamma: 4  0.4  0.14 

Shelter index 
(Scenario 2) 

C: 58.8 - gamma: 
180  

0.1  − 0.24 

Substrate: organic- 
silt-sand, gravel, 
cobble, stone, 
boulder (Scenario 3) 

C: 90 - gamma: 250  0.4  0.28 

Shade and 
vegetation: boulder 
shade, other shade, 
algae, moss, plants 
(Scenario 4) 

C: 124 - gamma: 
280  

0.16  0.23 

Substrate, shade, and 
vegetation (Scenario 
5) 

C: 95 - gamma: 250  0.58  0.2  

RF All variables MD: 11, RS: 9  − 0.21  0.11 
Shelter index MD: 2, RS: 1  0.33  − 0.4 
Substrate: organic- 
silt-sand, gravel, 
cobble, stone, 
boulder 

MD: 10, RS: 9  0.14  0.46 

Shade and 
vegetation: boulder 
shade, other shade, 
algae, moss, plants 

MD: 1, RS: 1  − 0.13  − 0.05 

Substrate, shade, and 
vegetation 

MD: 13, RS: 20  0.12  0.41  

GB All variables LR: 0.02, MD: 2, 
MSL: 5, NE: 200  

0.2  0.35 

Shelter index LR: 0.02, MD: 2, 
MSL: 5, NE: 100  

0.44  − 0.18 

Substrate: organic- 
silt-sand, gravel, 
cobble, stone, 
boulder 

LR: 0.02, MD: 6, 
MSL: 3, NE: 200  

0.3  0.49 

Shade and 
vegetation: boulder 
shade, other shade, 
algae, moss, plants 

LR: 0.02, MD: 2, 
MSL: 9, NE: 100  

− 0.3  − 0.08 

Substrate, shade, and 
vegetation 

LR: 0.05, MD: 4, 
MSL: 5, NE: 100  

0.23  0.34  
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overfitting (Kalita et al., 2023). Therefore, it is necessary to find optimal 
hyperparameters using e.g., grid search method and cross validation to 
avoid overfitting (Fayed and Atiya, 2019). In all our SVR models small 
values of C and gamma (e.g., 1) resulted in poor performance which 
shows the complex non-linear relationship between habitat variables 
and salmon abundance. The SVR models’ performance improves as the 
values of C and gamma increase as they reach the best performance. In 
RF and GB approaches, the depth of decision tree represents the length 
of each tree. The deeper decision tree means more split permitting the 
trees to describe more variation in the dataset (Breiman, 2001). In the 
presented heatmaps for RF and GB models, small value of maximum 
depth (i.e., 1) leads to low model performance whereas larger values do 
not necessarily improve the models. The R2 for the RF models are the 
lowest among all models across all scenarios except in scenario 2 (shelter 
index) of fry modeling. In GB, each additional estimator contributes to 
model complexity and may improve the performance. Lower number of 
estimators result in suboptimal performance and under fitting (Sagi and 
Rokach, 2018) which we observed in GB heatmaps. Whereas larger 
number of estimators result in model improvement (Callens et al., 
2020). 

The feature selection is a helpful pre-processing strategy to build a 
simpler model and improve the performance (Li et al., 2017). In the 
regression models, we observed that the selection of specific habitat 

variables, such as substrates, shades, and vegetation, leads to improved 
performance. The R2 values obtained for these variables in scenarios 3, 
4, and 5 are significantly higher compared to scenario 2, where the 
models only consider the individual habitat variables and were unable to 
establish meaningful relationships between each habitat variables and 
juvenile salmon abundance. Our results indicated that a combination of 
habitat conditions, i.e. selection of certain features, such as substrates, 
shades, and vegetation is more effective than individual variables like 
water depth or water velocity, which have been reported to impact ju
venile salmon in previous studies (e.g., Mäki-Petäys et al., 2004, Binns 
and Eiserman, 1979, Heggenes, 1990). The inconsistencies in the results 
of scenario 2 with the existing studies may be due to the robustness of 
the data. If the data is scarce or does not encompass the various aspects 
of the task, the learning could fall short, affecting the performance of ML 
(Mosavi et al., 2018). 

To gain a better insight about the individual habitat variables such as 
water depth and water velocity where the models exhibited low per
formance, we specifically looked at the mean velocity and mean depth 
distributions with respect to the salmon abundance in all study sites 
(Fig. 5). A study conducted by Mäki-Petäys et al. (2002) in the Teno 
River reported that fry prefer near zero and below 20 cms− 1 velocities, 
while parr exhibit a preference for velocities ranging between 35 and 80 
cms− 1. Our results (Fig. 5a) reveal some deviations in the abundance 

Fig. 7. Grid-Search heatmaps of hyperparameters and mean cross-validation scores (R2) in Parr habitat-abundance regression models: a) SVR - Scenario 3, b) SVR - 
Scenario 4, c) RF - Scenario 4, d) GBR – Scenario 1. Darker colors show higher scores. 
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patterns of fry and parr compared to the outcomes reported by Mäki- 
Petäys et al. (2002). For fry, our results indicated significantly lower 
abundance at near zero velocities and the highest at velocities between 
24 and 34 cms− 1. For parr, the abundance peaked between 13 and 23 
cms− 1 and declined as the velocities increased beyond this range. On the 
other hand, we observed that the abundance of both fry and parr across 
various depth ranges align with the measurements reported by Mäki- 
Petäys et al. (2002) where fry and parr optimal depths are 5 to 25 cm and 
5 to 35 cm respectively. Nevertheless, approximately 40 % of fry 
abundance were identified at depths greater than 29 cm, which is 
outside the optimum reported by Mäki Petäys et al. (2002). These de
viations from the expected preferences in mean velocity and mean depth 
in our dataset may result from environmental factors such as local 
habitat, competition, or juvenile salmon behavior adaptation in the 
specific study area (Mäki-Petäys et al., (2002), Rosenfeld et al., 2005), or 
data quality (Mosavi et al., 2018). The data can be enriched through 
invariance assessment to obtain the group characteristic (Tsai and Yang, 
2012) or by using casually dependent coefficients for handling missing 

values (Sivapalan et al., 2005). These approaches may enhance the 
robustness of the data which could impact the model development and 
performance. In addition, we recommend exploring other advanced ML 
techniques, such as deep learning, for modeling as in some cases they 
have proven to be useful in habitat abundance modeling (Ditria et al., 
2020). 

In this research, to decrease the complexity of regression models and 
improve the performance, we suggested a practical approach by 
employing support vector classification technique to classify the fry and 
parr abundance based on their abundance histograms. Transformation 
of a regression problem into a classification could improve the model 
performance (Salman and Kecman, 2012, Torgo and Gama, 1996). 
While the classification models do not predict the abundance values like 
regression models, they offer a useful approximation of juvenile salmon 
abundance within the specific defined classes. The fry abundance clas
sification model demonstrates high accuracies on both the mean cross- 
validation and test sets across all scenarios. However, the accuracies 

Table 3 
SVM, RF, GBR modeling results for parr with R2 as a performance metric. (LR: 
Learning-Rate, MD: Max-Depth, MSL: Min-Samples-Leaf, NE: n-estimators, RS: 
Random-State). Bolded numbers indicate the highest mean cross-validation/test 
scores per model and scenario.  

Model Habitat variable Optimized 
hyperparameter 
value 

Mean Cross- 
Validation 
Score 

Test 
Score  

SVR All variables (Scenario 
1) 

C: 44.9 - gamma: 2  0.41  0.04 

Shelter index 
(Scenario 2) 

C: 36.1 - gamma: 
11  

0.23  − 0.04 

Substrate: organic-silt- 
sand, gravel, cobble, 
stone, boulder 
(Scenario 3) 

C: 36 - gamma: 225  0.55  0.23 

Shade and vegetation: 
boulder shade, other 
shade, algae, moss, 
plants (Scenario 4) 

C: 257.1 - gamma: 
226.5  

0.53  0.12 

Substrate, shade, and 
vegetation (Scenario 
5) 

C: 36.7 - gamma: 
38.4  

0.53  0.12  

RF All variables MD: 5 - RS: 2  0.31  − 0.29 
Shelter index MD: 1 - RS: 12  0.12  − 0.04 
Substrate: organic-silt- 
sand, gravel, cobble, 
stone, boulder 

MD: 10 - RS: 35  0.31  − 0.23 

Shade and vegetation: 
boulder shade, other 
shade, algae, moss, 
plants 

MD: 13 - RS: 39  0.4  0.47 

Substrate, shade, and 
vegetation 

MD: 9 - RS: 34  0.31  − 0.09  

GB All variables LR: 0.05, MD: 2, 
MSL: 5, NE: 900  

0.44  − 0.7 

Shelter index LR: 0.02, MD: 4, 
MSL: 9, NE: 300  

0.32  − 0.3 

Substrate: organic-silt- 
sand, gravel, cobble, 
stone, boulder 

LR: 0.05, MD: 2, 
MSL: 9, NE: 900  

0.4  − 1.07 

Shade and vegetation: 
boulder shade, other 
shade, algae, moss, 
plants 

LR: 0.05, MD: 6, 
MSL: 5, NE: 100  

0.34  0.6 

Substrate, shade, and 
vegetation 

LR: 0.05, MD: 4, 
MSL: 3, NE: 200  

0.4  0.16  

Table 4 
SVC results for modeling fry abundance. Bolded numbers indicate the highest 
mean cross-validation/test scores per model and scenario.  

Scenario Habitat variables Best 
Parameters 

Mean cross- 
validation 
Score 

Test 
Score  

Scenario 
1 

All variables C: 42.86 - 
gamma: 3.79  

0.86  0.96  

Scenario 
2 

Water temperature C: 0.01 - 
gamma: 0.01  

0.77  0.96 

Mean depth C: 8.17 - 
gamma: 
93.88  

0.79  0.96 

Mean velocity C: 0.01 - 
gamma: 0.01  

0.77  0.96 

Organic, silt, sand C: 36.74 - 
gamma: 44.9  

0.78  0.74 

Gravel C: 63.27 - 
gamma: 100  

0.78  0.96 

Cobble C: 0.01 - 
gamma: 0.01  

0.77  0.96 

Stone C: 0.01 - 
gamma: 0.01  

0.77  0.96 

Boulder C: 0.01 - 
gamma: 0.01  

0.77  0.96 

Boulder shade C: 4.09 - 
gamma: 
77.55  

0.78  0.96 

Other shade C: 2.05 - 
gamma: 
12.25  

0.79  0.96 

Algae C: 0.01 - 
gamma: 0.01  

0.77  0.96 

Moss C: 0.01 - 
gamma: 0.01  

0.77  0.96 

Plants C: 0.01 - 
gamma: 0.01  

0.77  0.96 

Shelter index C: 24.5 - 
gamma: 
97.96  

0.91  0.96  

Scenario 
3 

Substrate: organic-silt- 
sand, gravel, cobble, 
stone, boulder 

C: 32.66 - 
gamma: 
53.07  

0.82  0.96 

Scenario 
4 

Shade and vegetation: 
boulder shade, other 
shade, algae, moss, 
plants 

C: 48.98 - 
gamma: 
97.96  

0.80  0.96 

Scenario 
5 

Substrate, shade, and 
vegetation 

C: 4.091 - 
gamma: 89.8  

0.85  0.96  
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of SVC models for parr abundance are comparatively lower. This can be 
attributed to the increased complexity of the model, which considers 
four distinct classes instead of two in the SVC modeling for fry. While 
classification models may not capture the full complexity of habitat 
data, they can still offer valuable insights for understanding and man
aging juvenile salmon abundance. 

Atlantic salmon is a critical natural resource and cultural element in 
Northern Europe (Landauer et al., 2023), supporting local societies, 
ecosystems, and ecosystem services. In addition, salmon has a special 
role in the culture of indigenous Sami people in the Teno River catch
ment (Hiedanpää et al., 2020). Currently, Atlantic salmon stocks in the 
North Atlantic area are declining (ICES, 2023) and more information is 
urgently needed to support environmental policy and management 

decisions for conservation and restoration (e.g. Lennox et al., 2021). 
This includes an improved understanding of habitat-abundance re
lationships for different life stages of Atlantic salmon in the riverine 
conditions. Our study demonstrated that small-size datasets and the 
presence of complex non-linear relationships between habitat and ju
venile salmon abundance could impact the models’ performance and 
reliability. These factors can pose challenges in capturing the relation
ship between species abundance and habitat conditions and the effec
tiveness of ML techniques (Danandeh Mehr et al., 2022; Guo et al., 2015; 
McPherson and Jetz, 2007). The availability of data and the character
istics of specific ecological communities could influence the selection 
and development of models (Mondal and Bhat, 2021). In future studies, 
it is crucial to consider factors like data quality and characteristics such 
as temporal variations, as they introduce uncertainties in both the 
dataset and the modeling process. It is recommended to consider un
certainty analysis as it is an effective approach to understand the degree 
of variability associated with models and level of confidence in pre
dictions (Lin et al., 2015). Improved ML based models could help to 
identify critical locations in the riverine conditions and combined with 
process-based hydrodynamical modelling, the habitat-abundance esti
mation could be done even in real-time including varying conditions in 
the riverine habitat. However, before reaching that analytical level and 
getting ML results to support decision making, it is important to identify 
and quantify the sources of uncertainty as they contribute to the vari
ance of ecological predictions (Buisson et al., 2010). Therefore, a 
comprehensive examination of these factors will enhance the accuracy 
and robustness of modeling. In addition, machine learning methods 
often struggle to precisely model the habitat data, as noted by Crisci 
et al., (2012). Thus, it is crucial to exercise caution when utilizing these 
models. 

5. Conclusion 

Recognizing the complex and non-linear nature of habitat- 
abundance modeling, we employed ML techniques to model the juve
nile salmon abundance in Teno catchment, using a relatively small 
habitat dataset. A comparison between regression and classification 
models revealed that the relationship between the habitat dataset and 
juvenile salmon abundance is indeed intricate. Consequently, the 
regression techniques struggled to fit suitable models to the data, despite 
their inherent ability to handle complex non-linear relationships. 
Among the regression models, those incorporating substrates, shades, 
and vegetation demonstrated higher levels of accuracy. Notably, the 
support vector classification model outperformed the regression tech
niques in terms of modeling accuracy. Among the regression models, 
SVR demonstrates the highest performance. 

This study provides insights into the challenges and potential of 
machine learning techniques for juvenile salmon habitat-abundance 
modeling in complex habitat environments. The findings emphasize 
the importance of considering the limitations of machine learning 
models, particularly in habitat contexts, and the need for further 
research to address temporal variations and improve the precision of 
habitat-abundance modeling. Such advancements will aid in the devel
opment of robust and reliable tools for fisheries management and con
servation strategies, facilitating the sustainable management of Atlantic 
salmon populations and their habitats. 
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writing process 

During the preparation of this work, Bähar Jelovica used chatGPT in 
order to improve the language and fluency of the text. After using this 
tool/service, Bähar Jelovica reviewed and edited the content as needed 
and takes full responsibility for the content of the publication. 

Table 5 
SVC results for modeling parr abundance. Bolded numbers indicate the highest 
mean cross-validation/test scores per model and scenario.  

Scenario Habitat variables Best 
Parameters 

Mean cross- 
validation 
Score 

Test 
Score 

Scenario 
1 

All variables C: 97.96 - 
gamma: 0.01  

0.55  0.48  

Scenario 
2 

Water temperature C: 0.01 - 
gamma: 0.01  

0.47  0.48 

Mean Depth C: 4.09 - 
gamma: 
20.41  

0.51  0.48 

Mean Velocity C: 0.01 - 
gamma: 0.01  

0.47  0.48 

Organic, silt, sand C: 0.01 - 
gamma: 0.01  

0.47  0.48 

Gravel C: 0.01 - 
gamma: 0.01  

0.47  0.48 

Cobble C: 16.33 - 
gamma: 
30.62  

0.48  0.48 

Stone C: 97.96 - 
gamma: 79.6  

0.56  0.48 

Boulder C: 14.29 - 
gamma: 
65.31  

0.48  0.48 

Boulder shade C: 0.01 - 
gamma: 0.01  

0.47  0.48 

Other shade C: 28.58 - 
gamma: 
4.091  

0.48  0.48 

Algae C: 6.13 - 
gamma: 
16.33  

0.47  0.43 

Moss C: 4.09 - 
gamma: 
12.25  

0.48  0.35 

Plants C: 2.05 - 
gamma: 
57.15  

0.48  0.48 

Shelter index C: 28.58 - 
gamma: 
59.19  

0.53  0.48  

Scenario 
3 

Substrate: Organic-silt- 
sand, gravel, cobble, 
stone, boulder 

C: 6.13 - 
gamma: 
30.62  

0.55  0.48 

Scenario 
4 

Shade and vegetation: 
boulder shade, other 
shade, algae, moss, 
plants 

C: 44.9 - 
gamma: 
95.92  

0.52  0.48 

Scenario 
5 

Substrate, shade, and 
vegetation 

C: 2.05 - 
gamma: 
77.55  

0.59  0.48  
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Appendix 

Appendix A 

A1: Box plots of habitat variables and fish abundance shows the skewness and dispersions of all variables in the habitat dataset. 

Figure A1. Boxplots of the dataset to recap the skewness, dispersion, and outliers in the habitat data and juvenile salmon abundance. 
A2: Distribution of various substrate types and the corresponding juvenile salmon abundance in each sampling site in the study area – cobble and 

stone are the most observed substrates. 
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Figure A2. Substrate type distributions and juvenile salmon abundance per sampling site (a: Fry abundance, b: Parr abundance). 
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Vähä, J.P., Erkinaro, J., Falkegård, M., Orell, P., Niemelä, E., 2017. Genetic stock 
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